Prolonged static stretching increases the magnitude and decreases the complexity of knee extensor muscle force fluctuations

Author:

Pethick JamieORCID,Moran JasonORCID,Behm David G.ORCID

Abstract

Static stretching decreases maximal muscle force generation in a dose-response manner, but its effects on the generation of task-relevant and precise levels of submaximal force, i.e. force control, is unclear. We investigated the effect of acute static stretching on knee extensor force control, quantified according to both the magnitude and complexity of force fluctuations. Twelve healthy participants performed a series of isometric knee extensor maximal voluntary contractions (MVCs) and targeted intermittent submaximal contractions at 25, 50 and 75% MVC (3 x 6 seconds contraction separated by 4 seconds rest, with 60 seconds rest between each intensity) prior to, and immediately after, one of four continuous static stretch conditions: 1) no stretch; 2) 30-second stretch; 3) 60-second stretch; 4) 120-second stretch. The magnitude of force fluctuations was quantified using the standard deviation (SD) and coefficient of variation (CV), while the complexity of fluctuations was quantified using approximate entropy (ApEn) and detrended fluctuation analysis (DFA) α. These measures were calculated using the steadiest 5 seconds of the targeted submaximal contractions at each intensity (i.e., that with the lowest SD). Significant decreases in MVC were evident following the 30, 60 and 120-second stretch conditions (all P < 0.001), with a significant correlation observed between stretch duration and the magnitude of decrease in MVC (r = –0.58, P < 0.001). The 120-second stretch resulted in significant increases in SD at 50% MVC (P = 0.007) and CV at 50% (P = 0.009) and 75% MVC (P = 0.005), and a significant decrease in ApEn at 75% MVC (P < 0.001). These results indicate that the negative effects of prolonged static stretching extend beyond maximal force generation tasks to those involving generation of precise levels of force during moderate- to high-intensity submaximal contractions.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3