In the absence of extensive initial training, cleaner wrasse Labroides dimidiatus fail a transitive inference task

Author:

Bonin LeonoreORCID,Bshary Redouan

Abstract

Transitive inference (TI) is a reasoning capacity that allows individuals to deduce unknown pair relationships from previous knowledge of other pair relationships. Its occurrence in a wide range of animals, including insects, has been linked to their ecological needs. Thus, TI should be absent in species that do not rely on such inferences in their natural lives. We hypothesized that the latter applies to the cleaner wrasseLabroides dimidiatusand tested this with 19 individuals using a five-term series (A > B > C > D > E) experiment. Cleaners first learned to prefer a food-rewarding plate (+) over a non-rewarding plate (-) in four plate pairs that imply a hierarchy from plate A to plate E (A+B-, B+C-, C+D-, D+E-), with the learning order counterbalanced between subjects. We then tested for spontaneous preferences in the unknown pairs BD (transitive inference task) and AE (as a control for anchors), interspersed between trials involving a mix of all known adjacent pairs. The cleaners systematically preferred A over E and showed good performance for A+B- and D+E- trials. Conversely, cleaners did not prefer B over D. These results were unaffected by the reinforcement history, but the order of learning of the different pairs of plates had a main impact on the remembrance of the initial training pairs. Overall, cleaners performed randomly in B+C- and C+D- trials. Thus, a memory constraint may have prevented subjects from applying TI. Indeed, a parallel study on cleaner wrasse provided positive evidence for TI but was achieved following extensive training on the non-adjacent pairs which may have over-ridden the ecological relevance of the task.

Funder

The Swiss National Science Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3