Case-only exome variation analysis of severe alcohol dependence using a multivariate hierarchical gene clustering approach

Author:

Gentry Amanda ElswickORCID,Alexander Jeffry C.,Ahangari MohammadORCID,Peterson Roseann E.ORCID,Miles Michael F.,Bettinger Jill C.,Davies Andrew G.,Groteweil Mike,Bacanu Silviu A.,Kendler Kenneth S.ORCID,Riley Brien P.,Webb Bradley T.ORCID,

Abstract

Background Variation in genes involved in ethanol metabolism has been shown to influence risk for alcohol dependence (AD) including protective loss of function alleles in ethanol metabolizing genes. We therefore hypothesized that people with severe AD would exhibit different patterns of rare functional variation in genes with strong prior evidence for influencing ethanol metabolism and response when compared to genes not meeting these criteria. Objective Leverage a novel case only design and Whole Exome Sequencing (WES) of severe AD cases from the island of Ireland to quantify differences in functional variation between genes associated with ethanol metabolism and/or response and their matched control genes. Methods First, three sets of ethanol related genes were identified including those a) involved in alcohol metabolism in humans b) showing altered expression in mouse brain after alcohol exposure, and altering ethanol behavioral responses in invertebrate models. These genes of interest (GOI) sets were matched to control gene sets using multivariate hierarchical clustering of gene-level summary features from gnomAD. Using WES data from 190 individuals with severe AD, GOI were compared to matched control genes using logistic regression to detect aggregate differences in abundance of loss of function, missense, and synonymous variants, respectively. Results Three non-independent sets of 10, 117, and 359 genes were queried against control gene sets of 139, 1522, and 3360 matched genes, respectively. Significant differences were not detected in the number of functional variants in the primary set of ethanol-metabolizing genes. In both the mouse expression and invertebrate sets, we observed an increased number of synonymous variants in GOI over matched control genes. Post-hoc simulations showed the estimated effects sizes observed are unlikely to be under-estimated. Conclusion The proposed method demonstrates a computationally viable and statistically appropriate approach for genetic analysis of case-only data for hypothesized gene sets supported by empirical evidence.

Funder

NIAAA

NIMH

VCU Alcohol Research Center

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3