Real-time classification of longitudinal conveyor belt cracks with deep-learning approach

Author:

Dwivedi Uttam KumarORCID,Kumar AshutoshORCID,Sekimoto Yoshihide

Abstract

Long tunnels are a necessary means of connectivity due to topological conditions across the world. In recent years, various technologies have been developed to support construction of tunnels and reduce the burden on construction workers. In continuation, mountain tunnel construction sites especially pose a major problem for continuous long conveyor belts to remove crushed rocks and rubbles out of tunnels during the process of mucking. Consequently, this process damages conveyor belts quite frequently, and a visual inspection is needed to analyze the damages. Towards this, the paper proposes a model to configure the damage and its size on conveyor belt in real-time. Further, the model also localizes the damage with respect to the length of conveyor belt by detecting the number markings at every 10 meters of the belt. The effectiveness of the proposed framework confirms superior real-time performance with optimized model detecting cracks and number markings with mAP of 0.850 and 0.99 respectively, while capturing 15 frames per second on edge device. The current study marks and validates the versatility of deep learning solutions for mountain tunnel construction sites.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference40 articles.

1. [Internet]. Japan-tunnel.org. 2022 [cited 12 July 2022]. Available from: https://www.japan-tunnel.org/en/sites/www.japan-tunnel.org.en/files/tnnl_book_aspects/Tunnel%20Activity%202020%20Overview_0.pdf

2. [Internet]. Ejrcf.or.jp. 2022 [cited 12 July 2022]. Available from: https://www.ejrcf.or.jp/jrtr/jrtr66/pdf/38-51.pdf

3. Design and construction of mountain tunnels in Japan;K Miura;Tunnelling and Underground Space Technology,2003

4. An insight into the new Austrian tunnelling method (NATM);M Karakuş;Proc. ROCKMEC,2004

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3