Performance of modeling and balancing approach methods when using weights to estimate treatment effects in observational time-to-event settings

Author:

Barros Guilherme W. F.ORCID,Eriksson Marie,Häggström Jenny

Abstract

In observational studies weighting techniques are often used to overcome bias due to confounding. Modeling approaches, such as inverse propensity score weighting, are popular, but often rely on the correct specification of a parametric model wherein neither balance nor stability are targeted. More recently, balancing approach methods that directly target covariate imbalances have been proposed, and these allow the researcher to explicitly set the desired balance constraints. In this study, we evaluate the finite sample properties of different modeling and balancing approach methods, when estimating the marginal hazard ratio, through Monte Carlo simulations. The use of the different methods is also illustrated by analyzing data from the Swedish stroke register to estimate the effect of prescribing oral anticoagulants on time to recurrent stroke or death in stroke patients with atrial fibrillation. In simulated scenarios with good overlap and low or no model misspecification the balancing approach methods performed similarly to the modeling approach methods. In scenarios with bad overlap and model misspecification, the modeling approach method incorporating variable selection performed better than the other methods. The results indicate that it is valuable to use methods that target covariate balance when estimating marginal hazard ratios, but this does not in itself guarantee good performance in situations with, e.g., poor overlap, high censoring, or misspecified models/balance constraints.

Funder

Vetenskapsrådet

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference59 articles.

1. Causal Inference for Statistics, Social, and Biomedical Sciences

2. Observation and Experiment

3. Model-Based Direct Adjustment;P. Rosenbaum;Journal Of The American Statistical Association,1987

4. Inference for Imputation Estimators;J. Robins;Biometrika,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3