Combined segmentation and classification-based approach to automated analysis of biomedical signals obtained from calcium imaging

Author:

Dursun Gizem,Bijelić Dunja,Ayşit Neşe,Kurt Vatandaşlar Burcu,Radenović Lidija,Çapar Abdulkerim,Kerman Bilal ErsenORCID,Andjus Pavle R.,Korenić AndrejORCID,Özkaya UfukORCID

Abstract

Automated screening systems in conjunction with machine learning-based methods are becoming an essential part of the healthcare systems for assisting in disease diagnosis. Moreover, manually annotating data and hand-crafting features for training purposes are impractical and time-consuming. We propose a segmentation and classification-based approach for assembling an automated screening system for the analysis of calcium imaging. The method was developed and verified using the effects of disease IgGs (from Amyotrophic Lateral Sclerosis patients) on calcium (Ca2+) homeostasis. From 33 imaging videos we analyzed, 21 belonged to the disease and 12 to the control experimental groups. The method consists of three main steps: projection, segmentation, and classification. The entire Ca2+ time-lapse image recordings (videos) were projected into a single image using different projection methods. Segmentation was performed by using a multi-level thresholding (MLT) step and the Regions of Interest (ROIs) that encompassed cell somas were detected. A mean value of the pixels within these boundaries was collected at each time point to obtain the Ca2+ traces (time-series). Finally, a new matrix called feature image was generated from those traces and used for assessing the classification accuracy of various classifiers (control vs. disease). The mean value of the segmentation F-score for all the data was above 0.80 throughout the tested threshold levels for all projection methods, namely maximum intensity, standard deviation, and standard deviation with linear scaling projection. Although the classification accuracy reached up to 90.14%, interestingly, we observed that achieving better scores in segmentation results did not necessarily correspond to an increase in classification performance. Our method takes the advantage of the multi-level thresholding and of a classification procedure based on the feature images, thus it does not have to rely on hand-crafted training parameters of each event. It thus provides a semi-autonomous tool for assessing segmentation parameters which allows for the best classification accuracy.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference34 articles.

1. Deep learning approaches to biomedical image segmentation.;IRI Haque;Informatics in Medicine Unlocked,2020

2. A new approach for cell detection and tracking;Z Wang;IEEE Access,2019

3. Segmentation and classification of cervical cells using deep learning.;Kurnianingsih;IEEE Access.,2019

4. A multi-organ nucleus segmentation challenge;N Kumar;IEEE transactions on medical imaging,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3