The angiotensin receptor neprilysin inhibitor LCZ696 attenuates renal fibrosis via ASK1/JNK/p38 MAPK-mediated apoptosis in unilateral ureteral obstruction

Author:

Ding Jun,Cui Sheng,Li Song Yu,Cui Lin Yan,Nan Qi Yan,Lin Xue Jing,Xuan Mei Ying,Jin Jian,Piao Shang Guo,Jiang Yu Ji,Zheng Hai Lan,Jin Ji Zhe,Chung Byung Ha,Yang Chul Woo,Cui Jing Hao,Li CanORCID

Abstract

The angiotensin receptor neprilysin inhibitor LCZ696 affords superior cardioprotection and renoprotection compared with renin-angiotensin blockade monotherapy, but the underlying mechanisms remain elusive. Herein, we evaluated whether LCZ696 attenuates renal fibrosis by inhibiting ASK1/JNK/p38 mitogen-activated protein kinase (MAPK)-mediated apoptosis in a rat model of unilateral ureteral obstruction (UUO) and in vitro. Rats with UUO were treated daily for 7 days with LCZ696, valsartan, or the selective ATP competitive inhibitor of apoptosis signal-regulating kinase 1 (ASK1), GS-444217. The effects of LCZ696 on renal injury were examined by assessing the histopathology, oxidative stress, intracellular organelles, apoptotic cell death, and MAPK pathways. H2O2-exposed human kidney 2 (HK-2) cells were also examined. LCZ696 and valsartan treatment significantly attenuated renal fibrosis caused by UUO, and this was paralleled by downregulation of proinflammatory cytokines and decreased inflammatory cell influx. Intriguingly, LCZ696 had stronger effects on renal fibrosis and inflammation than valsartan. UUO-induced oxidative stress triggered mitochondrial destruction and endoplasmic reticulum stress, which resulted in apoptotic cell death; these effects were reversed by LCZ696. Both GS-444217 and LCZ696 hampered the expression of death-associated ASK1/JNK/p38 MAPKs. In H2O2-treated HK-2 cells, LCZ696 and GS-444217 increased cell viability but decreased the production of intracellular reactive oxygen species and MitoSOX and apoptotic cell death. Both agents also deactivated H2O2-stimulated activation of ASK1/JNK/p38 MAPKs. These findings suggest that LCZ696 protects against UUO-induced renal fibrosis by inhibiting ASK1/JNK/p38 MAPK-mediated apoptosis.

Funder

National Natural Science Foundation of China

Education Department of Jilin Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference42 articles.

1. Transcriptome-Based Network Analysis Reveals Hirudin Potentiates Anti-Renal Fibrosis Efficacy in UUO Rats;HX Yu;Frontiers in pharmacology,2021

2. Redox signaling pathways in unilateral ureteral obstruction (UUO)-induced renal fibrosis;AK Aranda-Rivera;Free radical biology & medicine,2021

3. Exogenous pancreatic kininogenase protects against renal fibrosis in rat model of unilateral ureteral obstruction;JZ Jin;Acta pharmacologica SinicaPubMed Central PMCID,2020

4. Dapagliflozin Alleviates Renal Fibrosis by Inhibiting RIP1-RIP3-MLKL-Mediated Necroinflammation in Unilateral Ureteral Obstruction;MY Xuan;Frontiers in pharmacology,2021

5. Mitogen-Activated Protein Kinases and Hypoxic/Ischemic Nephropathy;F Luo;Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3