Comparing different models to forecast the number of mass shootings in the United States: An application of forecasting rare event time series data

Author:

Lei XueORCID,MacKenzie Cameron A.

Abstract

The number of mass shootings in the United States has increased in the recent decades. Understanding the future risk of the mass shootings is critical for designing strategies to mitigate the risk of mass shootings, and part of understanding the future risk is to forecast the frequency or number of mass shootings in the future. Despite the increasing trend in mass shootings, they thankfully remain rare events with fewer than 10 mass shootings occurring in a single year. Limited historical data with substantial annual variability poses challenges to accurately forecasting rare events such as the number of mass shootings in the United States. Different forecasting models can be deployed to tackle this challenge. This article compares three forecasting models, a change-point model, a time series model, and a hybrid of a time series model with an artificial neural network model. Each model is applied to forecast the frequency of mass shootings. Comparing among results from these models reveals advantages and disadvantages of each model when forecasting rare events such as mass shootings. The hybrid ARIMA-ANN model can be tuned to follow variation in the data, but the pattern of the variation may not continue into the future. The mean of the change-point model and the ARIMA model exhibit much more less annual variation and are not influenced as much by the inclusion of a single data point. The insights generated from the comparison are beneficial for selecting the best model and accurately estimating the risk of mass shootings in the United States.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference97 articles.

1. Why the US has the most mass shootings;J Christensen;CNN,2017

2. Cohen AP, Azrael D, Miller M. Rate of mass shootings has tripled since 2011, new research from Harvard shows. Mother Jones; 2014. https://www.motherjones.com/politics/2014/10/mass-shootings-increasing-harvard-research/.

3. Blair JP, Schwieit KW. A Study of Active Shooter Incidents in the United States between 2000 and 2013. US Department of Justice. 2014.

4. Patterns and prevalence of lethal mass violence;G Duwe;Criminology & Public Policy,2020

5. Random acts of violence? Examining probabilistic independence of the temporal distribution of mass killing events in the United States;DM King;Violence and Victims,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning and the Prevention of Mass Shooting in the United States;2023 10th International Conference on ICT for Smart Society (ICISS);2023-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3