Impact of highly deleterious non-synonymous polymorphisms on GRIN2A protein’s structure and function

Author:

Ahammad IshtiaqueORCID,Jamal Tabassum Binte,Bhattacharjee ArittraORCID,Chowdhury Zeshan Mahmud,Rahman Suparna,Hassan Md Rakibul,Hossain Mohammad Uzzal,Das Keshob Chandra,Keya Chaman Ara,Salimullah Md

Abstract

GRIN2A is a gene that encodes NMDA receptors found in the central nervous system and plays a pivotal role in excitatory synaptic transmission, plasticity and excitotoxicity in the mammalian central nervous system. Changes in this gene have been associated with a spectrum of neurodevelopmental disorders such as epilepsy. Previous studies on GRIN2A suggest that non-synonymous single nucleotide polymorphisms (nsSNPs) can alter the protein’s structure and function. To gain a better understanding of the impact of potentially deleterious variants of GRIN2A, a range of bioinformatics tools were employed in this study. Out of 1320 nsSNPs retrieved from the NCBI database, initially 16 were predicted as deleterious by 9 tools. Further assessment of their domain association, conservation profile, homology models, interatomic interaction, and Molecular Dynamic Simulation revealed that the variant I463S is likely to be the most deleterious for the structure and function of the protein. Despite the limitations of computational algorithms, our analyses have provided insights that can be a valuable resource for further in vitro and in vivo research on GRIN2A-associated diseases.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3