Neutrophil extracellular traps and phagocytosis in Pythium insidiosum

Author:

Sriwarom Apichaya,Chiewchengchol Direkrit,Saithong Supichcha,Worasilchai Navaporn,Chindamporn AriyaORCID

Abstract

Neutrophils are innate immune cells that play crucial roles in response to extracellular pathogens, including bacteria and fungi. Pythium insidiosum (P insidiosum) is a fungus-like pathogen that causes "pythiosis" in mammals. This study investigated in vitro function of human neutrophils against P. insidiosum. We demonstrated the killing mechanism of neutrophils when incubated with P. insidiosum zoospores (infective stage), such as phagocytosis and neutrophil extracellular traps (NETs). Healthy human neutrophils significantly reduced six strains of live zoospores isolated from different sources compared to the condition without neutrophils (p < 0.001), observed by colony count and trypan blue staining. As our results showed the killing ability of neutrophils, we further investigated the neutrophil killing mechanism when incubating with zoospores. Our study found that only two strains of heat-killed zoospores significantly induced phagocytosis (p < 0.01). Co-culture of heat-killed zoospores and neutrophils demonstrated NET formation, which was detected by immunofluorescence staining using DAPI, anti-myeloperoxidase, and anti-neutrophil elastase and quantitated under the fluorescence microscope. In addition, the level of cell-free DNA released from neutrophils (as a marker of NET production) after incubation with zoospores showed significantly increased levels when compared with unstimulated neutrophils (p < 0.001). Our findings demonstrate that neutrophils revealed the NET formation in response to P. insidiosum zoospores. This study is the first observation of the neutrophil mechanism against P. insidiosum, which could provide a better understanding of some parts of the innate immune response during pythiosis.

Funder

Ratchadapisek Sompoch Endowment Fund

Ratchadapisek Sompoch: Matching fund

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference33 articles.

1. Swamp cancer.;P Austwick;Nature,1974

2. Fifty years of oomycetes—from consolidation to evolutionary and genomic exploration;CA Lévesque;Fungal Diversity,2011

3. Cutaneous pythiosis in calves: An epidemiologic, pathologic, serologic and molecular characterization;G Konradt;Medical mycology case reports,2016

4. The mammalian pathogenic fungal-like oomycetes;L Mendoza;Mycoses,2012

5. Pythium insidiosum: an overview.;W Gaastra;Veterinary microbiology,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3