Link prediction based on spectral analysis

Author:

Gui ChunORCID

Abstract

Link prediction in complex network is an important issue in network science. Recently, various structure-based similarity methods have been proposed. Most of algorithms are used to analyze the topology of the network, and to judge whether there is any connection between nodes by calculating the similarity of two nodes. However, it is necessary to get the extra attribute information of the node in advance, which is very difficult. Compared to the difficulty in obtaining the attribute information of the node itself, the topology of the network is easy to obtain, and the structure of the network is an inherent attribute of the network and is more reliable. The proposed method measures kinds of similarity between nodes based on non-trivial eigenvectors of Laplacian Matrix of the network, such as Euclidean distance, Manhattan distance and Angular distance. Then the classical machine learning algorithm can be used for classification prediction (two classification in this case), so as to achieve the purpose of link prediction. Based on this process, a spectral analysis-based link prediction algorithm is proposed, and named it LPbSA (Link Prediction based on Spectral Analysis). The experimental results on seven real-world networks demonstrated that LPbSA has better performance on Accuracy, Precision, Receiver Operating Curve(ROC), area under the ROC curve(AUC), Precision and Recall curve(PR curve) and balanced F Score(F-score curve) evaluation metrics than other ten classic methods.

Publisher

Public Library of Science (PLoS)

Reference65 articles.

1. The link prediction problem for social networks;D Liben-Nowell;Journal of the American Society for Information Science and Technology,2007

2. Link Prediction in Complex Networks: A Survey;L Lu;Physica A: Statistical Mechanics and Its ApplicatioNetscience,2011

3. A Survey of Link Prediction in Complex Networks;V Martínez;Acm Computing Surveys,2016

4. Link prediction in drug-target interactions network using similarity indices;Y Lu;BMC Bioinformatics,2017

5. Disease networks. Uncovering disease-disease relationships through the incomplete interactome;J Menche;Science,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3