Abstract
Vibrio species are an emerging public and animal health risk in marine environments and the opportunistic bacterial pathogen Vibrio harveyi is a major disease risk for tropical aquaculture. Current understanding of virulence in V. harveyi is limited by strain-specific variability and complex host-pathogen dynamics. This study sought to integrate genomic investigation, phenotypic characterisation and in vivo challenge trials in barramundi (Lates calcarifer) to increase our understanding of V. harveyi virulence. We identified two hypervirulent isolates, Vh-14 and Vh-15 that caused 100% mortality in fish within 48 hours, and that were phenotypically and genotypically distinct from other V. harveyi isolates. Virulent isolates contained multiple plasmids, including a 105,412 bp conjugative plasmid with type III secretion system genes originally identified in Yersinia pestis. The emergence of this hypervirulent plasmid-mediated patho-variant poses a potential threat to the sustainable production of marine finfish in Southeast Asia, the Mediterranean and Australia. In addition, we observed an effect of temperature on phenotypic indicators of virulence with an increase in activity at 28°C and 34°C compared to 22°C. This suggests that temperature fluctuations associated with climate change may act as a stressor on bacteria, increasing virulence gene secretion and host adaptation. Our results utilising a myriad of technologies and tools, highlights the importance of a holistic view to virulence characterisation.
Funder
Sydney School of Veterinary Science, Faculty of Science, University of Sydney
Sydney Infectious Diseases Institute, University of Sydney
Sydney Vietnam Institute, University of Sydney
Department of Agriculture, Fisheries and Forestry, Australian Government
School of Life and Environmental Sciences, Faculty of Science, The University of Sydney,
Publisher
Public Library of Science (PLoS)