Dam Breakdown and Response of Protection Dam, Case Scenarios of Mosul-Badush Dams, Northern Iraq

Author:

Badowi Maha ShaherORCID,Saleh Sabbar AbdullahORCID,Abbood Mohammed RashidORCID

Abstract

In this study, a program was built to simulate the sudden and complete collapse of the Mosul and Badush Dams behavior towards this collapse and predict the level at which the water will balance in the two dams after the collapse, compared to different levels at the Mosul Dam before the collapse. Two mathematical models were built as inputs to this program. The first predicted the water level in the Mosul Dam reservoir in terms of its storage volume before the collapse, and the second predicted the water level in the Badush reservoir after the collapse, according to the level in the Mosul reservoir before the collapse. For each collapse scenario, the program was organized according to sequential steps summarized assuming the water level in the Badush Dam reservoir when the level stabilizes, and from it determining the water volume in Badush reservoir based on the geometric analysis of the reservoir, then the volume of water transferred from Mosul reservoir to Badush reservoir, and thus the volume of water inside Mosul reservoir before the collapse. From the first mathematical model, the level of the Mosul Dam reservoir was determined before the collapse. The second mathematical model determined the level of the Badush Dam reservoir after the collapse. The results showed that the program has high flexibility in predicting what will happen in the Badush Dam reservoir after the collapse based on the water level in the Mosul Dam reservoir before it collapses and that the limits of the program's work extend from the minimum to the maximum level in Mosul Dam at which the failure can occur. Also, the storage volume in Mosul Dam will be distributed to the two reservoirs after the failure until the level stabilizes. Badush Dam, at a level of 330.4 m (a.s.l), can expand the maximum flood wave resulting from the total and sudden collapse of Mosul Dam at its maximum level of 333 m (a.s.l).

Publisher

Tikrit University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling of Flood Wave Propagation Due to Hemren Dam Failure;Diyala Journal of Engineering Sciences;2024-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3