Affiliation:
1. a College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
2. b Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, China
Abstract
Abstract
The use of nanoscale zero-valent iron (nZVI) to remove heavy metal ions like Ni2+ from groundwater has been extensively studied; however, the compositional transformation of the Ni2+ and Fe0 during the removal is not clearly comprehensible. This study provides an insight into the componential, structural, and morphological transformations of Ni2+ and Fe0 at a solid–liquid interface using various characterization devices. The underlying mechanism of transformation was investigated along with the toxicity/impact of the transformed products on the groundwater ecosystem. The results indicated that Fe0 is transformed into lath-like lepidocrocite (γ-FeOOH), twin-crystal goethite (α-FeOOH), and spherical magnetite (Fe3O4), while Ni2+ is converted into Fe0.7Ni0.3 alloy and Fe–Ni composite (trevorite – NiFe2O4) with a fold-fan morphology. The Fe0 transformation mechanism includes the redox of Fe0 with Ni2+, H2O, and dissolved oxygen, the combination of Fe2+ and OH– produced by Fe0 corrosion to amorphous ferrihydrite, and the further mineralogical transformation to Fe oxides with the aid of Fe2+ adsorbed on ferrihydrite. The conversion of Ni2+ is accomplished by reduction by Fe0 and surface coordination with Fe oxides. Compared with Ni2+ and Fe0, the toxicity and bioavailability of the transformed products are significantly reduced, hence conducive to the application of zero-valent iron technology in groundwater remediation.
Funder
Key Project of Natural Science Foundation of China
Open Fund of Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources from Wuhan University of Science and Technology
Subject
Water Science and Technology,Environmental Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献