Outflow risks of antibiotic-resistant bacteria in stormwater bioretention cells: understanding roles of adsorption and transmission

Author:

Cai FangYue1,Zuo XiaoJun1,Xu QiangQiang1

Affiliation:

1. 1 Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China

Abstract

Abstract In this study, lab-scale bioretention cells were designed for the investigation of antibiotic-resistant bacteria (ARB) outflow profiles at different depths, effects of adsorption and transmission, as well as modelling evaluation of ARB outflow risks using the common decay models (e.g., first-order decay models). ARB outflow was first found in the upper layers (after 100 days of the operation) with the lowest transmission frequencies of antibiotic resistance. Although the adsorption of ARB onto the substrate and its surface biofilms was effective with the maximum amount of ARB adsorbed (Qmax) reaching 108 CFU/g of the substrate and 107 CFU/g of biofilms, ARB outflow was detected in the bottom outlets after over 4 months of operation, reflecting that there was still a risk of antibiotic resistance through the treatment of bioretention cells. ARB outflow for both upper and middle outlets could be well described by third-order polynomial equations with correlation coefficients 0.9067 (p = 0.0002) and 0.9780 (p < 0.0001), respectively, where there were both positive and negative relationships between outflow ARB and inflow ARB, confirming the combined action of mechanisms blocking ARB outflow (e.g., substrate adsorption) and promoting ARB outflow (like transmission). These suggested two potential controlling approaches for ARB outflow from stormwater bioretention cells.

Funder

National Natural Science Foundation of China

Jiangsu Provincial Department of Science and Technology

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3