The effect of initial loading on the removal of ammonium and potassium from source-separated human urine via clinoptilolite

Author:

Beler Baykal B.1,Kocaturk N. P.1,Allar A. D.1,Sari B.1

Affiliation:

1. Department of Environmental Engineering, Istanbul Technical University, Ayazaga, 34469, Istanbul, Turkey E-mail: kocaturkn@itu.edu.tr; allar@itu.edu.tr; sarib@itu.edu.tr

Abstract

Collection of wastewater in segregated streams is one of the new concepts in domestic wastewater management. One such stream is yellow water which is mainly human urine. Direct use of this richest fraction in terms of nutrients on plants as fertilizer is one of the recommendations as the final end use. Indirect use of urine as fertilizer may also be exercised after various modes of processing. One of those is processing with clinoptilolite to transfer plant nutrients onto the zeolite and then to recover them subsequently. One of the significant factors in this process is the initial nutrient loading with which clinoptilolite is charged. This paper aims to investigate the transfer of ammonium and potassium from source-separated urine onto clinoptilolite, concentrating upon surface concentrations attained and removal efficiencies under various initial ammonium loadings. The results have indicated that variations in initial loading have no significant effect in terms of removal efficiencies up to 10 mg NH4+/g clinoptilolite. Highly acceptable efficiencies could be attained up to 15 mg NH4+/g clinoptilolite after which the efficiency goes down as initial loading is increased. Overall, increased initial loadings result in higher final surface concentrations but decreased removal efficiencies.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3