Affiliation:
1. Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
2. Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Abstract
In this work, the interaction mechanisms between an autotrophic denitrification (AD) and heterotrophic denitrification (HD) process in a heterotrophic-autotrophic denitrification (HAD) system were investigated, and the performance of the HAD system under different S/Ac− molar ratios was also evaluated. The results demonstrated that the heterotrophic-combined-with-autotrophic denitrification process is a promising technology which can remove chemical oxygen demand (COD), sulfide and nitrate simultaneously. The reduction rate of NO3− to NO2− by the HD process was much faster than that of reducing NO2− to N2, while the reduction rate of NO3− to NO2− by the AD process was slower than that of NO2− to N2. Therefore, the AD process could use the surplus NO2− produced by the HD process. This could alleviate the NO2−–N accumulation and increase the denitrification rate. In addition, the inhibition effects of acetate on AD bacteria and sulfide on HD were observed, and the inhibition was compensated by the promotion effects on NO2−. Therefore, the processes of AD and HD seem to react in parallel, without disturbing each other, in our HAD system.
Subject
Water Science and Technology,Environmental Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献