Trend analysis of selected hydro-meteorological variables for the Rietspruit sub-basin, South Africa

Author:

Banda Vincent Dzulani1ORCID,Dzwairo Rimuka Bloodless2,Singh Sudhir Kumar3,Kanyerere Thokozani1

Affiliation:

1. Department of Earth Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa

2. Department of Civil Engineering, Durban University of Technology, P.O. Box 1334, Midlands, Imbali 3209, South Africa

3. K. Banerjee Centre of Atmospheric & Ocean Studies, University of Allahabad, Nehru Science Centre, Uttar Pradesh, Prayagraj 211002, India

Abstract

Abstract Identifying hydro-meteorological trends is critical for assessing climate change and variability both at a basin and regional level. This study examined the long- and short-term trends from stream discharge, temperature, and rainfall data around the Rietspruit sub-basin in South Africa. The data were subjected to homogeneity testing before performing the trend tests. Inhomogeneity was widely detected in discharge data, hence no further analyses were performed on such data. Temperature and rainfall trends and their magnitudes at yearly, seasonal, and monthly time steps were identified after applying the non-parametric Mann-Kendall and Sen's slope estimator. The possible starting point of a trend was determined by performing the sequential Mann-Kendall test. This study revealed a combination of upward and downward trends in both temperature and rainfall data for the time steps under observation. For rainfall on an annual basis, there were no statistically significant monotonic trends detected, although non-significant downward trends were dominant. However, significant decreasing rainfall trends were observed in dry and low rainfall months, which were April, August, September, and November. In contrast, significant upward temperature trends were detected at the Vereeniging climate station at an annual scale and in October, November, spring, and winter. The findings are critical for climate risk management and reduction decisions for both near- and long-term timescales.

Funder

BRICS

National Research Foundation (NRF) - South Africa

Durban University of Technology

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3