New experimental findings and biofilm modelling concepts

Author:

Wanner Oskar

Abstract

About ten years ago a mathematical model was presented which describes the spatial distribution and development in time of microbial species in mixed-culture biofilms. The model was based on the continuum approach and was one-dimensional in space. These two concepts still are the basis of practically all biofilm models used today. On the experimental side some remarkable new findings have been made in the past years: transport of dissolved components in the biofilm is not always due to molecular diffusion only, transport of particulate components can not be exclusively related to the net growth rates of the microbial species in the biofilm, the liquid phase volume fraction (porosity) in the biofilm is not a constant, and simultaneous attachment and detachment of cells and particles at the biofilm surface is an essential process. These experimental findings had a significant impact on our notion of biofilm systems and called for the integration of new processes in the original mixed-culture biofilm model. The new processes can reproduce most of the experimental observations, however, they are described by empirical mathematical functions. Their mechanisms and significance for biofilm behavior have not been completely elucidated yet. Thus, the extended mixed-culture biofilm model represents primarily a tool for research on biofilm processes.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3