Methanotrophs for Clean-Up of Polluted Aquifers

Author:

Halden K.,Chase H. A.

Abstract

Aquifers are vital reserves of drinking water which are under threat from pollution. Particular problems are posed by chlorinated compounds such as pesticides and solvents which native microbial populations are unable to degrade. Pump and treat regimes have proved unsuccessful since pollutants remain adsorbed to sediments but a possible solution is the use of introduced microorganisms to degrade pollutants in-situ. It is suggested that methanotrophs may be suitable candidates. Methanotrophs have an extraordinary range of degradative powers due to the non-specificity of their methane mono-oxygenase enzyme. We have shown that Methylosinus trichosporium OB3b is capable of degrading many common chlorinated pollutants co-metabolically when it is grown in a copper-depleted, oxygen-rich medium at neutral pH. In the subsurface however, such conditions do not exist and cultures grown in a medium made with untreated Cambridge aquifer water have a reduced range of degradative powers compared to similar cells grown in a medium made with distilled water. This means that to use methanotrophs for aquifer clean-up, the cells may need to be cultured above ground in ideal conditions and then introduced by some method of injection or infiltration. This may be possible because the degradative reactions are not coupled to growth and Methylosinus trichosporium OB3b cells maintain pollutant degrading ability up to 19 days after they have stopped growing. A suspension of these cells may thus be treated as a biocatalyst.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coping with a Halogenated One-Carbon Diet: Aerobic Dichloromethane-Mineralising Bacteria;Biotechnology for the Environment: Strategy and Fundamentals;2002

2. Recent Developments in Cleanup Technologies;Remediation Journal;1998

3. Halogenated aliphatic compounds;Environment & Chemistry;1998

4. Study of Copper Accumulation by the Type I Methanotroph Methylomicrobium albus BG8;Environmental Science & Technology;1996-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3