Short-term demand forecast using a bank of neural network models trained using genetic algorithms for the optimal management of drinking water networks

Author:

Rangel Hector Rodriguez1,Puig Vicenç2,Farias Rodrigo Lopez3,Flores Juan J.4

Affiliation:

1. Instituto Tecnológico de Culiacán, División de Estudios de Posgrado e Investigación, Juan de Dios Bátiz 310 pte. Col. Guadalupe C.P., 80220 Culiacán, Mexico

2. Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Carrer LLorens Artigas, 4-6, 08028 Barcelona, Spain

3. Centro de Cómputo y Procesos de Información Universitaria, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico

4. División de Estudios de Postgrado, Facultad de Ingeniería Eléctrica, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico

Abstract

Efficient management of a drinking water network reduces the economic costs related to water production and transport (pumping). Model predictive control (MPC) is nowadays a quite well-accepted approach for the efficient management of the water networks because it allows formulating the control problem in terms of the optimization of the economic costs. Therefore, short-term forecasts are a key issue in the performance of MPC applied to water distribution networks. However, the short-term horizon demand forecast in a horizon of 24 hours in an hourly based scale presents some challenges as the water consumption can change from one day to another, according to certain patterns of behavior (e.g., holidays and business days). This paper focuses on the problem of forecasting water demand for the next 24 hours. In this work, we propose to use a bank of models instead of a single model. Each model is designed for forecasting one particular hour. Hourly models use artificial neural networks. The architecture design and the training process are performed using genetic algorithms. The proposed approach is assessed using demand data from the Barcelona water network.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Reference49 articles.

1. Short term electrical load forecasting using Holt-Winters method;Al-Hafid;Al-Rafadain Engineering Journal,2012

2. Design of optimal water distribution systems;Alperovits;Water Resources Research,1977

3. A short-term, pattern-based model for water-demand forecasting;Alvisi;Journal of Hydroinformatics,2007

4. A neural network short term load forecasting model for the Greek power system;Bakirtzis;Power Systems, IEEE Transactions,1996

5. A fully adaptive forecasting model for short-term drinking water demand;Bakker;Environmental Modelling & Software,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3