An evaluation of ANN methods for estimating the lengths of hydraulic jumps in U-shaped channel

Author:

Houichi Larbi1,Dechemi Noureddine2,Heddam Salim3,Achour Bachir4

Affiliation:

1. Research Laboratory in Applied Hydraulics, Department of hydraulics, University of Batna, Algeria

2. Laboratory Construction and Environment, Polytechnical National School, Alger, Algeria

3. Faculty of Science, Department of Agronomy, University of Skikda, Algeria

4. Research Laboratory in Subterranean and Surface hydraulics, University of Biskra, Algeria

Abstract

Modelling of hydraulic characteristics of jump using theoretical and empirical models has always been a difficult task. The length of jump may be defined as the distance measured from the toe of the jump to the location of the surface rise. Due to high turbulence this length cannot be determined easily by theory. However, it has been investigated experimentally so as to design the stilling basins with hydraulic jumps. In this work, the control of a hydraulic jump by broad-crested sills in a U-shaped channel is recalled theoretically and experimentally examined. The study begins with a multiple regression (MR) analysis. Then, and in order to model the relative lengths of hydraulic jumps, we have implemented and evaluated two different artificial neural networks (ANN): multilayer perceptron neural network (MLPNN) and generalized regression neural network (GRNN). The results demonstrate the predictive strength of GRNN and its potential to predict hydraulic problems with an adaptive spread value. However, the MLPNN model remains best classified by these indexes of performance.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3