Neural network rainfall-runoff forecasting based on continuous resampling

Author:

Abrahart Robert J.1

Affiliation:

1. School of Geography, University of Nottingham, Nottingham NG7 2RD, UK

Abstract

Most neural network hydrological modelling has used split-sample validation to ensure good out-of-sample generalisation and thus safeguard each potential solution against the danger of overfitting. However, given that each sub-set is required to provide a comprehensive and sufficient representation of both environmental inputs and hydrological processes, then to partition the data could create limited individual representations that are, in some manner or other, deficient with respect to fitness-for-purpose. To address this issue a comparison has been undertaken between neural network rainfall-runoff models developed using (a) conventional stopping conditions and (b) a continuous single-model bootstrap. The results exhibit marginal improvement in terms of greater accuracies and better global generalisations—but the operation itself demonstrates substantial benefits through the provision of additional diagnostic capabilities and increased automation with respect to certain problematic aspects of the model development process.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3