Soil moisture distribution under trickle irrigation: a review

Author:

Bajpai Arpna1,Kaushal Arun1

Affiliation:

1. Department of Soil and Water Engineering, Punjab Agricultural University, Ludhiana, Punjab 141004, India

Abstract

Abstract The wetting pattern of soil under trickle (drip) irrigation is governed by soil texture, structure, initial water content, emitter spacing, discharge rate and irrigation frequency. For efficient management of trickle irrigation moisture distribution plays an important role. The degree of soil wetted volume in an irrigation system determines the amount of water required to wet the root zone. This article helps in understanding moisture distribution for different lateral spacing, emitter spacing, emitter discharge rates and drip line installation depth for trickle irrigation under various soil conditions all over the world. This review reveals that soil moisture distribution and uniformity within the soil profile were affected by the distance between emitters rather than the distance between drip lines. In drip irrigation systems, the less the dripper spacing, the greater the moisture distribution as well as water use efficiency and crop yield. The radial spread of moisture was greater at lower water application rates, whereas the vertical spread was greater at higher water application rates. The vertical movement of soil moisture was greater than the horizontal movement under surface as well as subsurface drip irrigation systems. Deeper drip tape installations had a potential risk of not providing moisture to shallow rooted crops.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference72 articles.

1. Improving moisture distribution pattern of subsurface drip irrigation in sandy soil by using synthetic soil conditioner;Misr Journal of Agricultural Engineering,2006

2. Simulation of soil wetting pattern under point source trickle irrigation;Journal of Applied Science,2009

3. Revising wetted soil volume under trickle source for irrigation scheduling,2010

4. Micro drip irrigation of field crops: effect on yield, water uptake, and drainage in sweet corn;Soil Science Society of America Journal,2002

5. Soil surface wetting pattern under trickle source in arid lands: badia regions;Jordan Journal of Agriculture Science,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3