Stormwater nitrogen removal performance of a floating treatment wetland

Author:

Borne Karine E.1,Tanner Chris C.2,Fassman-Beck Elizabeth A.1

Affiliation:

1. Faculty of Engineering, Department of Civil & Environmental Engineering, University of Auckland, Private Bag 92019 Auckland Mail Centre, Auckland 1142, New Zealand

2. National Institute of Water & Atmospheric Research, PO Box 11-115, Hamilton, New Zealand

Abstract

The nitrogen (N) removal efficiency and effluent quality of two parallel stormwater retention ponds, one retrofitted with a floating treatment wetland (FTW) and one without any vegetation, was compared in a field trial. This study shows that inclusion of FTWs in stormwater retention ponds has potential to moderately improve N removal. Median FTW outlet event mean concentrations (EMCs) were lower than median inlet and control pond outlet EMCs for all species of N, except for NH4-N. Performance was statistically better from late spring to end autumn due to higher organic nitrogen (ON) removal and denitrification in presence of the FTW. Low dissolved oxygen (DO), higher temperature and increased organic matter (OM) and microbial activity below the FTW, likely facilitated the higher denitrification rates observed over this period. Greater sediment N accumulation in the FTW pond also contributed to its higher overall N removal. Higher OM availability in the FTW pond due to release of root exudates and supply of detritus from plant die-back may have contributed to floc formation in the water column, increasing particulate ON settlement. Enhanced ON mineralisation may also be responsible but was probably limited in summer due to the low DO induced by the FTW. Direct uptake by the plants appears to be of less importance.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3