Re-evaluation of the effects of precipitation amount and temperature on precipitation δ18O at the monthly and interannual timescales

Author:

Li Yunxia1,Guang Kaiyue1,Tian Lijun2,Tian Yiping1,Li Jiayan1,Yang Chenxi1,Rao Zhiguo1

Affiliation:

1. a Key Laboratory of Ecological and Environmental Change in Subtropical Zone, School of Geographic Sciences, Hunan Normal University, Changsha 410081, China

2. b Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

Abstract Proxy records of the oxygen isotope ratio of 18O/16O of past precipitation (δ18Op) have played an important role in revealing past hydroclimatic changes, on the basis of global observed relationships between monthly precipitation δ18Op and both precipitation amount and temperature only of a few years as reported by Dansgaard in 1964. It is therefore crucial to systematically re-evaluate the relationships using modern instrumental data. We analysed monthly and annual mean correlations from 108 global stations over the past about 60 years. Consistent with previously reported results, monthly δ18Op values in the high latitudes (≥60°) show a significant positive correlation with temperature (referred to as ‘temperature effect’) and a negative trend with precipitation amount in the low latitudes (≤20°) (‘amount effect’). However, these correlations do not hold true for yearly mean data for more than three-quarters of the stations evaluated. This indicates that the relationships between the different temporal resolutions could be more complicated than previously thought. For the related natural archives, such as ice cores, sediments, and carbonates, further careful evaluation is required to establish the robustness of their paleoclimatic implications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Scientific Research Foundation of Hunan Provincial Education Department

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3