Application of machine learning and statistical approaches for optimization of heavy metals (Cd2+, Pb2+, Cu2+, and Zn2+) adsorption onto carbonized char prepared from PET plastic bottle waste

Author:

Chakraborty Tapos Kumar1,Rahman Md. Sozibur1,Islam Khandakar Rashedul1,Nice Md. Simoon1,Netema Baytune Nahar1,Zaman Samina1,Ghosh Gopal Chandra1,Rayhan Md Abu1,Khan Md. Jahed Hassan1,Munna Asadullah1,Haque Md. Muhaiminul1,Bosu Himel1,Hossain Nazmul2,Halder Monishanker2,Khan Abu Shamim3

Affiliation:

1. a Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh

2. b Department of Computer Science and Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh

3. c Environmental Laboratory, Asia Arsenic Network, Jashore 7400, Bangladesh

Abstract

ABSTRACT This study focuses on the probable use of carbonized char prepared from PET plastic bottles for heavy metals (HMs) adsorption (Cd2+, Pb2+, Cu2+, and Zn2+). The prepared adsorbent is characterized by field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy (FTIR). Batch adsorption experiments were conducted with the influencing of different operational conditions: contact time (1–180 min), adsorbate concentration (25–300 mg/L), adsorbent dose (0.5–6 g/L), pH (3–7), and temperature (25–60 ºC). High coefficient value [Cd2+ (R2 = 0.99), Pb2+ (R2 = 0.97), Cu2+ (R2 = 0.94), and Zn2+ (R2 = 0.98)] of process optimization model suggest that this model was significant, where pH and adsorbent dose expressively stimulus removal efficiency including 86.68, 73.66, 67.10, and 57.04% for Cd2+, Pb2+, Cu2+, and Zn2+ at pH (7), respectively. Furthermore, ANN and BB-RSM revealed a good association between the tested and projected values. The maximum monolayer adsorption capacity of Cd2+, Pb2+, Cu2+, and Zn2+ was 263.157, 78.740, 196.078, and 84.745 mg/g, respectively. Pseudo-second-order was the well-suited kinetics, where Langmuir and Freundlich isotherm could explain better for equilibrium adsorption data. Thermodynamic study shows HMs adsorption is favorable, exothermic, and spontaneous.

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3