Identifying failure types in cyber-physical water distribution networks using machine learning models

Author:

Parajuli Utsav1ORCID,Shin Sangmin1ORCID

Affiliation:

1. 1 School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University, Carbondale, IL 62901, USA

Abstract

Abstract Water cyber-physical systems (CPSs) have experienced anomalies from cyber-physical attacks as well as conventional physical and operational failures (e.g., pipe leaks/bursts). In this regard, rapidly distinguishing and identifying a facing failure event from other possible failure events is necessary to take rapid emergency and recovery actions and, in turn, strengthen system's resilience. This paper investigated the performance of machine learning classification models – support vector machine (SVM), random forest (RF), and artificial neural networks (ANNs) – to differentiate and identify failure events that can occur in a water distribution network (WDN). Datasets for model features related to tank water levels, nodal pressure, and water flow of pumps and valves were produced using hydraulic model simulation (WNTR and epanetCPA tools) for C-Town WDN under pipe leaks/bursts, cyber-attacks, and physical attacks. The evaluation of accuracy, precision, recall, and F1-score for the three models in failure type identification showed the variation of their performances depending on the specific failure types and data noise levels. Based on the findings, this study discussed insights into building a framework consisting of multiple classification models, rather than relying on a single best-performing model, for the reliable classification and identification of failure types in WDNs.

Publisher

IWA Publishing

Reference48 articles.

1. Real-time identification of cyber-physical attacks on water distribution systems via machine learning–based anomaly detection techniques;Journal of Water Resources Planning and Management,2019

2. Leak detection and size identification in fluid pipelines using a novel vulnerability index and 1-D convolutional neural network;Engineering Applications of Computational Fluid Mechanics,2023

3. Effect of data scaling methods on machine learning algorithms and model performance;Technologies,2021

4. Impact of active night population and leakage exponent on leakage estimation in developing countries;Water Practice and Technology,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3