Recent advancement in NiFe2O4-based nanocomposites for the photocatalytic degradation of pollutants in aqueous solutions: a comprehensive systematic review

Author:

Derakhshani Elham1,Naghizadeh Ali2

Affiliation:

1. a PhD Candidate of Environmental Health Engineering, Student Research Committee, Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran

2. b Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran

Abstract

Abstract Nanocomposites with diameters of 1 to 100 nm have modified properties such as uniform size distribution, small size, high surface-to-volume ratio, high absorbability, porosity, and various potential roles, including in catalytic and biological activities. The purpose of this research study was to systematically review all research studies on the photocatalytic decomposition of pollutants by NiFe2O4-based nanocomposites and evaluate the optimal laboratory conditions and the results of these studies. The present systematic review was conducted by searching Scopus, PubMed and Web of Science databases until March 2022. The parameters of nano catalyst type and size, synthesis methods, pollutant type, optimal pH, optimal initial pollutant concentration, optimal catalyst concentration, optimal time, radiation and removal efficiency were investigated. 454 studies were screened and using the inclusion and exclusion criteria, in total, 31 studies met our inclusion criteria and provided the information necessary to photocatalytic degradation of pollutants by NiFe2O4-based nanocomposites. In the investigated studies, the percentage of photocatalytic degradation of pollutants by NiFe2O4-based nanocomposites was reported to be above 70%, and in some studies, the removal efficiency had reached 100%. From the results of this systematic review, it was concluded that the photocatalytic process using NiFe2O4-based nanocomposites has a high effect on the degradation of aqueous solution pollutants.

Funder

Birjand University of Medical Sciences

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Pollution,Water Science and Technology,Ecology,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3