A pilot-scale comparison of mesophilic and thermophilic digestion of source segregated domestic food waste

Author:

Banks Charles J.1,Chesshire Michael2,Stringfellow Anne1

Affiliation:

1. School of Civil Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK

2. Greenfinch Ltd, The Business Park, Coder Road, Ludlow, SY8 1XE, UK

Abstract

Source segregated food waste was collected from domestic properties and its composition determined together with the average weight produced per household, which was 2.91 kg per week. The waste was fed over a trial period lasting 58 weeks to an identical pair of 1.5 m3 anaerobic digesters, one at a mesophilic (36.5°C) and the other at a thermophilic temperature (56°C). The digesters were monitored daily for gas production, solids destruction and regularly for digestate characteristics including alkalinity, pH, volatile fatty acid (VFA) and ammonia concentrations. Both digesters showed high VFA and ammonia concentrations but in the mesophilic digester the pH remained stable at around 7.4, buffered by a high alkalinity of 13,000 mg l−1; whereas in the thermophilic digester VFA levels reached 45,000 mg l−1 causing a drop in pH and digester instability. In the mesophilic digester volatile solids (VS) destruction and specific gas yield were favourable, with 67% of the organic solids being converted to biogas at a methane content of 58% giving a biogas yield of 0.63 m3 kg−1 VSadded. Digestion under thermophilic conditions showed potentially better VS destruction at 70% VS and a biogas yield of 0.67 m3 kg−1 VSadded, but the shifts in alkalinity and the high VFA concentrations required a reduced loading to be applied. The maximum beneficial loading that could be achieved in the mesophilic digester was 4.0 kg VS m−3 d−1.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3