Recovery of high purity phosphorus from municipal wastewater secondary effluent by a high-speed adsorbent

Author:

Midorikawa I.1,Aoki H.1,Omori A.1,Shimizu T.1,Kawaguchi Y.2,Kassai K.2,Murakami T.2

Affiliation:

1. Microza & Water Processing Division, Asahi Kasei Chemicals Corporation, 2-1 Samejima, Fuji-City, Shizuoka 416-8501, Japan E-mail: midorikawa.ic@om.asahi-kasei.co.jp

2. Japan Sewage Works Agency, 5141 Shimosasame, Toda-City, Saitama 335-0037, Japan E-mail: murakamit@jswa.go.jp

Abstract

High purity phosphorus was recovered from municipal wastewater secondary effluent as phosphate, using a newly developed phosphorus adsorption and recovery system. A high-speed adsorbent having a unique porous structure was used in this system. The secondary effluent, showing total phosphorus (TP) of 0.1–2.1 mg P/L, was passed through an adsorbent packed column at high space velocity (SV) of 15 h−1. The TP of the treated water was as low as 0.02–0.04 mg P/L, indicating that 97% of phosphorus in the secondary effluent was removed. The removed phosphorus was desorbed from the adsorbent by passing a sodium hydroxide aqueous solution through the column. Calcium hydroxide was added to this solution to precipitate the phosphorus as calcium phosphate. This precipitate was neutralized with hydrochloric acid aqueous solution, washed with water, and then solid–liquid separation was performed for the phosphorus recovery. The main constituent of the recovered phosphorus was apatite-type calcium phosphate, with 16% phosphorus content, which matched that of high-grade phosphorus ore. The hazardous elements content of the recovered phosphorus was exceedingly low. Therefore the recovered phosphorus can be applied to an alternative for phosphorus ore, or to a phosphate fertilizer.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3