Adsorption behavior of Fe (III) in aqueous solution on melamine

Author:

Peng Hao1,Guo Jing1,Wang Bingqing2

Affiliation:

1. College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China

2. Changshou Economic and Technological Development Area Development Investment Group Co., Ltd, Chongqing 408100, China

Abstract

Abstract This paper focused on the adsorption behavior of Fe (III) in aqueous solution on melamine. The effects of experimental conditions including dosage of melamine, reaction time and reaction temperature were investigated. The results showed that nearly 99% Fe (III) was adsorbed under the optimal conditions: melamine dosage (mole ratio) at n(C3H6N6)/n(Fe) = 3.5:1, reaction time of 60 min and reaction temperature of 90 °C. The optimal processing factors were obtained from response surface methodology and the effects of processing parameters on the removal efficiency of Fe (III) followed the order: mole ratio (n(C3N6H6):n(Fe)) > reaction temperature > reaction time. The adsorption kinetics behavior was fitted well with the pseudo-second-order model. The thermodynamic study showed that the adsorption process was unspontaneous and endothermic. The value of free energy change and standard enthalpy change disclosed that the mechanism of adsorption onto melamine was physisorption. The results will be useful for further applications of system design in the treatment of practical waste effluents.

Funder

Chongqing Municipal Education Commission

Chongqing Science and Technology Commission

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3