Effects of high temperature melting on the porosity and microstructure of slags from domestic sewage sludge

Author:

Abu-Kaddourah Z.1,Idris A.1,Noor M. J.2,Ahmadun F. R.1

Affiliation:

1. Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2. Department of Civil Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Abstract

Sewage treatment plant sludges continue to pose great problems in terms of volume, odour and method of disposal. Thermal treatment of sewage sludge is considered as an attractive method in reducing sludge volume, which at the same time produces reusable by-products. Studies on high temperature melting of sewage sludge, above 1200°C, show promising results where by stable and inert by-products are produced. This paper presents a part of a big project on thermal treatment of sewage sludge, carried out in University of Putra Malaysia, this part highlights the changes in the microstructure of domestic sewage sludge when subjected to different meltingprocedures; heating temperature, cooling rate, and holding time. The heating temperatures ranged between 1250°C–550°C, and the rate of cooling was between 2.5°C–10°C per minute. Using XRD analyses, itwas found that the melted slags were amorphous despite the different melting procedures applied. The SEM microphotographs indicated that some crystallization had occurred under the melting procedures; 1350°C with a cooling rate of 5°C per minute and a holding time of 45 minutes, 1400°C with a cooling rate of 2.5°C per minute and holding time of 45 minutes, and 1400°C with a cooling rate of 5°C per minute and without holding time.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3