Step-feed operation at short detention times – a cost effective method for improving wastewater treatment

Author:

Adamski R.E.1,DeSantis V.1,Spangel A.1,Pynn J.1,Betty L.1,Koch C.M.2,Gyory S.A.2

Affiliation:

1. New York City Department of Environmental Protection, 96-05 Horace Harding Expressway, Corona, New York 11368-5107, USA

2. Greeley and Hansen, 115 Broadway, New York City, New York 10006-1604, USA

Abstract

The Newtown Creek Water Pollution Control Plant (WPCP) is New York City's largest wastewater treatment plant. Wastewater treatment is provided by a high-rate activated sludge process without primary sedimentation. This process has achieved approximately 65 percent BOD5 and 75 percent TSS removal. As part of a revised facility plan, two alternative tracks were recommended for upgrading the plant to secondary treatment and providing nitrogen removal. One track would require demolishing most of the existing tankage and constructing new primary tanks followed by a step-feed biological nitrogen removal activated sludge process. The second track would preserve the existing high-rate activated sludge process and use biological filters to remove additional TSS, BOD5 and nitrogen. Alternatives have been investigated to enhance treatment at the Newtown Creek WPCP while the secondary treatment plant upgrading is being completed. This investigation demonstrated that simply converting the existing aeration tanks to step-feed operation could significantly improve TSS and BOD removals. These findings have led the City to consider a third track to meet secondary treatment requirements, (but with no nitrogen removal), consisting of modifying the existing plant to step-feed and adding additional step-feed aeration/sedimentation capacity. This track offers significant cost savings over Track 1 and Track 2.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3