Survival of legionella pneumophila and salmonella typhimurium in biofilm systems

Author:

Armon R.1,Starosvetzky J.1,Arbel T.1,Green M.2

Affiliation:

1. Environmental and Water Resources Engineering, Technion, Haifa 32000, Israel

2. Faculty of Agricultural Engineering, Technion, Haifa 32000, Israel

Abstract

Biofilms are found in many water supply systems where they form an environment in which different bacteria can be entrapped for long periods. Besides the aesthetic aspect, biofilm has a major contribution in biocorrosion, disinfection inefficiency and possibly may act as a reservoir for pathogenic and non-pathogenic microorganisms. In the present study, two pathogenic bacteria Legionella pneumophila and Salmonella typhimurium WG-49 were introduced into a biofilm simulation flow system supplied with sterile and non-sterile tap water. The survival of these microorganisms into the biofilm formed on glass and PVC coupons at two temperatures (24°C and 36°C) was compared in this system. On glass supports, under sterile conditions at 36°C, Legionella pneumophila sg3 decreased by 6 logs during 40d continuous recirculation. Under non-sterile conditions, L. pneumophila decreased by only half log <48d. S. typhimurium WG-49 under the same conditions showed an increase of 3 logs in the sterile system for 31d, while in the non-sterile system it dropped by only 0.5 log for 20d. At 24°C, L. pneumophila remained stable for >40d under sterile conditions. In non-sterile conditions, L. pneumophila dropped by 1 log for 35d. S. typhimurium, in a sterile system, remained almost unchanged, while in the non-sterile system an increase of 3 logs was observed for the first 21d and thereafter a decrease of 2 logs for the next 21d of the experiment. L. pneumophila on PVC coupons at 36°C survived better compared with glass support. The experimental data show that survival of pathogenic microorganisms into biofilm is variable and depends on many factors, making the survival prediction a difficult task. However, the survival results of L. pneumophila and S. typhimurium in time terms should raise important questions on their potential threat in water distribution systems.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3