Degradation of acetochlor via the UV/persulfate process: Mechanisms, kinetics, and pathways

Author:

Hu Chen-Yan12,Ji Sheng-Jie1,Dong Zheng-Yu1ORCID,Wu Yi-Hui1,Dong Zi-Yi1,Hu Li-Li1,Yang Xin-Yu1,Liu Hao1

Affiliation:

1. a College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China

2. b Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China

Abstract

ABSTRACT The environmental health risks of acetochlor (ACE) have received widespread attention. The removal of ACE via the ultraviolet/persulfate (UV/PS) process was investigated in this study. The degradation of ACE in the UV/PS process fitted pseudo-first-order kinetics. ACE can be effectively removed in the pH range of 5.0–9.0. In addition, the removal efficiency of ACE increases with the increase in PS concentration. The experimental and calculation results prove that the contributions of UV irradiation, sulfate radicals (SO4•-) and hydroxyl radicals (HO·) were 40, 52.1, and 6.43%, respectively, and the second-order rate constants between SO4•- and with ACE are 3.5 × 109 and 5.6 × 109M−1s−1, respectively. The influences of different water matrices were explored. Both chloride ions and bicarbonate can inhibit the degradation of ACE, while the effects of sulfate ions and nitrate can be negligible. Humic acid (HA) has an inhibitory effect of ACE degradation. The intermediates were detected and the possible degradation pathway of ACE was proposed. The results of this study can provide technical support for the control of ACE in the environment.

Funder

National Natural Science Foundation of China

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3