Photochemical degradation of bromocresol green dye by UV/Co2+ process via activation of peroxymonosulfate: a mechanistic approach

Author:

Naz Kausar1,Sayed Murtaza1ORCID,Rehman Faiza2,Gul Ikhtiar1,Noreen Saima3,Khan Qaiser1,Gul Saman1,Hussain Saddam1

Affiliation:

1. a Radiation and Environmental Chemistry Lab, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan

2. b Department of Chemistry, University of Poonch, Rawalakot, Azad Kashmir, Pakistan

3. c Department of Chemistry, University of Agriculture, Faisalabad, Pakistan

Abstract

Abstract This study is focused on the application of the ultraviolet/peroxymonosulfate/cobaltous cation (UV/PMS/Co2+) (cobalt II ion) system for the successful degradation of bromocresol green (BCG) dye in an aqueous solution. The influences of different variables like initial PMS concentration, pH of the media, and catalyst dose in terms of BCG degradation were studied. Furthermore, the effectiveness of the UV/PMS/Co2+ system for the degradation of BCG was performed in different water systems (i.e., deionized water, tap water, and industrial wastewater). UV and UV–PMS systems alone contributed 13 and 67%, respectively, in the degradation of BCG with the kapp values of 0.006 and 0.0297 min−1, respectively. It was observed that by the incorporation of Co2+ in the UV–PMS system, the degradation of BCG was significantly increased from 67 to 98% with the corresponding increase in kapp values to 0.0931 min−1. The scavenger results revealed the SO4•- and •OH radicals are the dominant species involved in the BCG removal. The toxicity data showed that the UV/PMS/Co2+ method considerably reduced the toxicity of textile effluent. In addition, seven BCG degradation products (DPs) have been identified experimentally using gas chromatography–mass spectrometry (GC-MS). In conclusion, the UV/PMS/Co2+ procedure can be used to effectively cleanse and detoxify wastewater.

Publisher

IWA Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3