Machine learning-based ensemble model for groundwater quality prediction: A case study

Author:

Jose Annie1ORCID,Yasala Srinivas1

Affiliation:

1. 1 Centre for Geotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India

Abstract

ABSTRACT Groundwater quality is vital for public health and environmental sustainability. As managing large datasets is challenging for traditional methods, this study combines the hidden Markov model (HMM) and the artificial neural network (ANN), a machine learning-based ensemble model to predict groundwater quality in Kanyakumari District, Tamil Nadu, India. In order to train the model, the acquired data is cleaned and normalized. HMM is used to find hidden patterns while the ANN architecture is used to forecast groundwater quality categories. Accuracy, precision, sensitivity, and F1-scores calculation are necessary to evaluate the model's performance. The effectiveness of the approach can be analyzed by k-fold cross-validation scores. The study demonstrates the effectiveness of the HMM–ANN approach in groundwater quality prediction with an accuracy of 97.41%. Thus, the research contributes to groundwater quality assessment by offering a unique methodology that facilitates informed decision-making for water resource management and environmental conservation.

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3