Verifying the feasibility of wastewater-based epidemiological monitoring for the small catchment and sewage networks with significant pretreatment

Author:

Sartirano Daniele1ORCID,Morecchiato Fabio2,Antonelli Alberto23,Lotti Tommaso1,Morelli Damasco4,Ramazzotti Matteo5,Rossolini Gian Maria23,Lubello Claudio1

Affiliation:

1. a Department of Civil and Environmental Engineering, University of Florence, Florence, Italy

2. b Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy

3. c Microbiology and Virology Unit, Careggi University Hospital, University of Florence, Florence, Italy

4. d Ingegnerie Toscane Srl., Florence, Italy

5. e Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, University of Florence, Florence, Italy

Abstract

ABSTRACT Wastewater-based epidemiology (WBE) has emerged as a valuable tool for COVID-19 monitoring, especially as the frequency of clinical testing diminishes. Beyond COronaVIrus Disease 19 (COVID-19), the tool's versatility extends to addressing various public health concerns, including antibiotic resistance and drug consumption. However, the complexity of sewage systems introduces noise when measuring chemical tracer concentrations, potentially compromising their applicability for modeling. In our study, we detail the approach adopted to determine the concentration of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) ribonucleiec acid (RNA) in wastewater from the Ponte a Niccheri wastewater treatment plant in Tuscany (Italy), with a sample size of N = 13,935 inhabitants. The unique characteristics of this wastewater system, including mandatory pretreatment in septic tanks with extended retention times, the presence of a hospital for COVID-19 patients, and mixed sewage networks, posed additional challenges. Nevertheless, our results highlight a robust and significant correlation between our measurements and the number of infections within the wastewater treatment plant's catchment area at the time of sampling. A simple linear model also shows promising results in estimating the number of infected people within the area.

Funder

European Union

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3