Enhancing short-term streamflow prediction in the Haihe River Basin through integrated machine learning with Lasso

Author:

Song Yongyu12ORCID,Zhang Jing12

Affiliation:

1. a Beijing Key Laboratory of Resource Environment and Geographic Information System, Capital Normal University, Beijing 100048, China

2. b Beijing Laboratory of Water Resources Security, Beijing 100048, China

Abstract

ABSTRACT With the widespread application of machine learning in various fields, enhancing its accuracy in hydrological forecasting has become a focal point of interest for hydrologists. This study, set against the backdrop of the Haihe River Basin, focuses on daily-scale streamflow and explores the application of the Lasso feature selection method alongside three machine learning models (long short-term memory, LSTM; transformer for time series, TTS; random forest, RF) in short-term streamflow prediction. Through comparative experiments, we found that the Lasso method significantly enhances the model's performance, with a respective increase in the generalization capabilities of the three models by 21, 12, and 14%. Among the selected features, lagged streamflow and precipitation play dominant roles, with streamflow closest to the prediction date consistently being the most crucial feature. In comparison to the TTS and RF models, the LSTM model demonstrates superior performance and generalization capabilities in streamflow prediction for 1–7 days, making it more suitable for practical applications in hydrological forecasting in the Haihe River Basin and similar regions. Overall, this study deepens our understanding of feature selection and machine learning models in hydrology, providing valuable insights for hydrological simulations under the influence of complex human activities.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3