Embracing epistemic uncertainty: a risk evaluation method for pollutants in stormwater

Author:

Pons Vincent12ORCID,Strømberg Merethe2,Blecken Godecke-Tobias1,Tscheikner-Gratl Franz2,Viklander Maria1,Muthanna Tone Merete12

Affiliation:

1. a Department of Civil, Environmental and Natural Resources Engineering, Urban Water Engineering, Luleå University of Technology, Luleå 971 87, Sweden

2. b Department of Civil and Environmental Engineering, water and wastewater (VA) group, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway

Abstract

ABSTRACT In this study, we show that pollutants of emerging concern are, by nature, prone to the emergence of epistemic uncertainty. We also show that the current uncertainty quantification methods used for pollutant modelling rely almost exclusively on parameter uncertainty, which is not adequate to tackle epistemic uncertainty affecting the model structure. We, therefore, suggest a paradigm shift in the current pollutant modelling approaches by adding a term explicitly accounting for epistemic uncertainties. In a proof-of-concept, we use this approach to investigate the impact of epistemic uncertainty in the fluctuation of pollutants during wet-weather discharge (input information) on the distribution of mass of pollutants (output distributions). We found that the range of variability negatively impacts the tail of output distributions. The fluctuation time, associated with high covariance between discharge and concentration, is a major driver for the output distributions. Adapting to different levels of epistemic uncertainty, our approach helps to identify critical unknown information in the fluctuation of pollutant concentration. Such information can be used in a risk management context and to design smart monitoring campaigns.

Publisher

IWA Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3