Temporal and spatial variation in atmospheric wet deposition of nutrients and organic matter at the southern and northern foothills of the Qinling Mountains

Author:

Si Fan12ORCID,Li Kai12,Huang Tinglin12ORCID,Li Nan12,Wen Gang12,Huang Daojun3

Affiliation:

1. a Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China

2. b Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China

3. c Shaanxi Xi Xian New Area Water Affairs Grp Co LTD, Xianyang 712000, China

Abstract

ABSTRACT Wet deposition significantly impacts the basin ecosystem and water quality of the Qinling Mountains (QMs). However, few research focused on the difference in wet deposition between the northern (QN) and southern (QS) foothills due to the barrier effect of the QMs. This two-year investigation studied nutrient and organic matter deposition in QN and QS during summer and autumn. Results showed higher concentrations of nitrogen (N), phosphorus (P), dissolved organic carbon (DOC), and permanganate index (CODMn) in QN's rainwater, particularly in autumn. The CODMn in QN ranged 0.59–7.67 mg/L, and DOC ranged 0.64–4.45 mg/L. For QS, the CODMn ranged 0.71–3.25 mg/L, and DOC ranged 0.28–2.62 mg/L. Backward trajectory analysis revealed the accumulation of pollutants in QN originating from Northern China, intensified by autumn heating and straw burning. Tyrosine-like and humic-like components in rainwater DOM suggested that they primarily originated from autochthonous sources. Rainwater N:P mass ratios range from 39:1 to 145:1, highlighting a higher N input than P in QMs' wet deposition. The findings underscore the importance of atmospheric wet deposition in nutrient and organic matter input to the QMs and establish a foundation for exploring the ecological effects of wet deposition.

Funder

National Key Research and Development Program of China

Key Scientific Research Program Funded by Education Department of Shaanxi Province

China Postdoctoral Science Foundation

Key Research and Development Program of Shaanxi province

National Natural Science Foundation of China

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3