Nucleobase-Modified Microgels Synthesized via Microfabrication Technology for DNA Adsorption

Author:

ÇETİN Kemal1ORCID

Affiliation:

1. NECMETTİN ERBAKAN ÜNİVERSİTESİ

Abstract

DNA isolation is a crucial procedure since DNA-based assays have great importance in molecular biology, biochemistry and biomedical applications. The objective of this study is to fabricate micron-sized hydrogels as adsorbents for DNA. Poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) microgels were synthesized by free radical polymerization in the presence of N,N'-methylenebisacrylamide as a crosslinker, in the microholes of a microstencil array chip. Then, adenine was immobilized to microgels through the epoxy groups of glycidyl methacrylate. Scanning electron microscopy and Fourier transform infrared spectroscopy were employed to investigate the chemical and morphological characterizations of the microgels. The findings of the experiments demonstrate that the microgels had a cylindrical shape, were of uniform size, and had a height and diameter of around 500 μm. Observation of aromatic C=C peak confirmed the existence of adenine ligand in the microgel structure. Adsorption studies were carried out to determine the optimal conditions for DNA adsorption of nucleobase-immobilized microgels. After initially increasing, the quantity of DNA adsorbed onto the microgels reached a saturation level at a DNA concentration of around 2.0 mg/mL. The maximum adsorption was 38.54 mg/g microgels for an initial DNA concentration of 2.0 mg/mL in the optimum medium pH and temperature. DNA adsorption capabilities are shown to not significantly decline in recurrent adsorption-desorption cycles. As a result of the findings, adenine-immobilized microgels were demonstrated to be a viable option for DNA adsorption. Additionally, as a reference for future research, this study highlights the benefits of microfabrication technology, such as its simplicity of use in fabricating adsorption materials with the desired size, shape, and uniformity.

Publisher

Hitit University

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3