FliA-Dependent Surface Macromolecules Promote Initial Biofilm Development of Escherichia coli by Influencing the Bacterial Surface Properties

Author:

GÖRDESLİ DUATEPE Fatma Pınar1ORCID

Affiliation:

1. IZMIR UNIVERSITY OF ECONOMICS

Abstract

FliA is an important regulatory component for the synthesis of surface macromolecules which are involved in motility and biofilm development of Escherichia coli. In this study, the roles of FliA-dependent surface macromolecules in E. coli surface tension, surface heterogeneity and surface roughness, and initial biofilm development consisting of reversible and irreversible adhesion were investigated using E. coli MG1655 wild-type strain and fliA gene deleted mutant strain. Negative Gibbs free energy change values calculated using bacterial surface tensions obtained by a spectrophotometric method showed that both wild-type and mutant cells in water can reversibly adhere to the surface of the model solid, silicon nitride (Si3N4). The calculations further showed that bacterial reversible auto-adhesion and co-adhesion were also thermodynamically favorable. In comparison, the reversible adhesion and auto-adhesion capacities of wild-type cells were higher than the mutant cells. Direct measurements by atomic force microscopy (AFM) and thorough analysis of the recorded adhesion data showed that the irreversible adhesion strength of wild-type cells to Si3N4 in water was at least 2.0-fold greater than that of the mutants due to significantly higher surface heterogeneity resulting in higher surface roughness for the wild-type cells compared to those obtained for the mutants. These results suggest that strategies aimed at preventing E. coli biofilm development should also consider a combined method, such as modifying the surface of interest with a bacterial repellent layer and targeting the FliA and FliA-dependent surface macromolecules to reduce both reversible and irreversible bacterial adhesion and hence the initial biofilm development of E. coli.

Publisher

Hitit University

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3