Laccase-Based CLEAs: Chitosan as a Novel Cross-Linking Agent

Author:

Arsenault Alexandre12,Cabana Hubert13,Jones J. Peter2

Affiliation:

1. Environmental Engineering Laboratory, Department of Civil Engineering, University of Sherbrooke, 2 500 Boulevard de l'Université, Sherbrooke, QC, Canada J1K 2R1

2. Department of Chemical and Biotechnological Engineering, University of Sherbrooke, 2 500 Boulevard de l'Université, Sherbrooke, QC, Canada J1K 2R1

3. Étienne-Le Bel Centre de Recherche Clinique, Centre Hospitalier Universitaire de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada J1H 5N4

Abstract

Laccase from Coriolopsis Polyzona was insolubilized as cross-linked enzyme aggregates (CLEAs) for the first time with chitosan as the cross-linking agent. Concentrations between 0.01 and 1.867 g/L of chitosan were used and between 0.05 and 600 mM of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride. The laccase was precipitated using ammonium sulphate and cross-linked simultaneously. Specific activity and thermal stability of these biocatalysts were measured. Activities of up to 737 U/g were obtained when 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was used as a substrate. Moreover, the stability of these biocatalysts was improved with regards to thermal degradation compared to free laccase when exposed to denaturing conditions of high temperature and low pH. The CLEAs stability against chemical denaturants was also tested but no significant improvement was detected. The total amount of ABTS to be oxidized during thermal degradation by CLEAs and free laccase was calculated and the insolubilized enzymes were reported to oxidize more substrate than free laccase. The formation conditions were analyzed by response surface methodology in order to determine an optimal environment for the production of efficient laccase-based CLEAs using chitosan as the cross-linking agent. After 24 hours of formation at pH 3 and at 4°C without agitation, the CLEAs exhibit the best specific activity.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Hindawi Limited

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3