A layered genetic algorithm with iterative diversification for optimization of flexible job shop scheduling problems

Author:

Amjad M.K.,Butt S.I.,Anjum N.,Chaudhry I.A.,Faping Z.,Khan M.

Abstract

Flexible job shop scheduling problem (FJSSP) is a further expansion of the classical job shop scheduling problem (JSSP). FJSSP is known to be NP-hard with regards to optimization and hence poses a challenge in finding acceptable solutions. Genetic algorithm (GA) has successfully been applied in this regard since last two decades. This paper provides an insight into the actual complexity of selected benchmark problems through quantitative evaluation of the search space owing to their NP-hard nature. A four-layered genetic algorithm is then proposed and implemented with adaptive parameters of population initialization and operator probabilities to manage intensification and diversification intelligently. The concept of reinitialization is introduced whenever the algorithm is trapped in local minima till predefined number of generations. Results are then compared with various other standalone evolutionary algorithms for selected benchmark problems. It is found that the proposed GA finds better solutions with this technique as compared to solutions produced without this technique. Moreover, the technique helps to overcome the local minima trap. Further comparison and analysis indicate that the proposed algorithm produces comparative and improved solutions with respect to other analogous methodologies owing to the diversification technique.

Publisher

Production Engineering Institute (PEI), Faculty of Mechanical Engineering

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Management Science and Operations Research,Mechanical Engineering,Nuclear and High Energy Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3