Microwave Radiothermometry in Evaluating Brain Temperature Changes (Review)

Author:

Shevelev O. A.1,Petrova M. V.1,Yuriev M. Yu.2,Dolgikh V. T.2,Mengistu E. M.1,Zhdanova M. A.2,Kostenkova I. Z.2

Affiliation:

1. Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology; Peoples Friendship University of Russia

2. Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology

Abstract

Aim. This review aims to inform physicians of different specialties (anesthesiologists, intensivists, neurologists, neurosurgeons, oncologists) about the diagnostic capabilities of microwave radiothermometry, which enables to identify and analyze features of alterations of cerebral temperature in brain damage.The review displays a critical analysis of 80 recent Russian and foreign open access publications found by keywords.The review presents major clinical features and pathophysiological mechanisms of cerebral thermal balance disruptions in brain lesions. Slow responsiveness and vulnerability of cerebral thermal homeostasis regulation mechanisms that underlie development of different temperature heterogeneity levels in the cerebral cortex in healthy brain and brain lesions are highlighted. The authors postulate their concept about the critical role of hyperthermia in the pathogenesis of brain damage and disruption of interconnections in the global central regulation system. A body of evidence explaining direct association between the depth of consciousness impairment and degree of cerebral cortex temperature heterogeneity manifestation is presented. It is emphasized that a significant increase in temperature heterogeneity with areas of focal hyperthermia accompanies an acute period of ischemic stroke, while in post-comatose state usually associated with prolonged impairment of consciousness, the temperature heterogeneity significantly subsides. It has been suggested that lowering of an increased and rising of the reduced temperature heterogeneity, for example by using temperature exposure, can improve altered level of consciousness in patients with brain damage. The diagnostic capabilities of various technologies used for cerebral temperature measurement, including microwave radiothermometry (MWR), are evaluated. Data on high accuracy of MWR in measurement of the cerebral cortex temperature in comparison with invasive methods are presented.Conclusion. In healthy individuals MWR revealed a distinct daily rhythmic changes of the cerebral cortex temperature, and badly violated circadian rhythms in patients with brain lesions. Since MWR is an easy-toperform, non-invasive and objective diagnostic tool, it is feasible to use this technology to detect latent cerebral hyperthermia and assess the level of temperature heterogeneity disruption, as well as to study the circadian rhythm of temperature changes.

Publisher

FSBI SRIGR RAMS

Subject

Critical Care and Intensive Care Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electrodynamic calculation of the electric field of a printed ring antenna for microwave radiothermometry of the breast;Biomedical Engineering;2024-03

2. Assessment of cerebral temperature balance in methamphetamine poisoning;Vestnik nevrologii, psihiatrii i nejrohirurgii (Bulletin of Neurology, Psychiatry and Neurosurgery);2023-11-27

3. A multichannel microwave radiothermograph for monitoring brain temperature;Biomedical Engineering;2023-11

4. Craniocerebral hypothermia in the acute period of ischemic stroke;Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3