Isolation and characterization of a secreted, cell-surface glycoprotein SCUBE2 from humans

Author:

Tsai Ming-Tzu12,Cheng Chien-Jui3,Lin Yuh-Charn1,Chen Chun-Chuan1,Wu Ann-Ru1,Wu Min-Tzu1,Hsu Cheng-Chin2,Yang Ruey-Bing14

Affiliation:

1. Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan

2. Institute of Nutritional Science, Chuang Shan Medical University, Taichung, Taiwan

3. Graduate Institute of Clinical Medicine and Department of Pathology, College of Medicine, Taipei Medical University and Hospital, Taipei, Taiwan

4. Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan

Abstract

SCUBE2 [signal peptide, CUB domain, EGF (epidermal growth factor)-like protein 2] belongs to an evolutionarily conserved SCUBE protein family, which possesses domain organization characteristic of an N-terminal signal peptide sequence followed by nine EGF-like repeats, a spacer region, three cysteine-rich repeat motifs, and one CUB domain at the C-terminus. Despite several genetic analyses suggesting that the zebrafish orthologue of the mammalian SCUBE2 gene participates in HH (Hedgehog) signalling, the complete full-length cDNA and biochemical function for mammalian SCUBE2 on HH signalling remains uninvestigated. In the present study, we isolated the full-length cDNA and studied the role of human SCUBE2 in the HH signalling cascade. When overexpressed, recombinant human SCUBE2 manifests as a secreted surface-anchored glycoprotein. Deletion mapping analysis defines the critical role of the spacer region and/or cysteine-rich repeats for membrane association. Further biochemical analyses and functional reporter assays demonstrated that human SCUBE2 can specifically interact with SHH (Sonic Hedgehog) and SHH receptor PTCH1 (Patched-1), and enhance the SHH signalling activity within the cholesterol-rich raft microdomains of the plasma membranes. Together, our results reveal that human SCUBE2 is a novel positive component of the HH signal, acting upstream of ligand binding at the plasma membrane. Thus human SCUBE2 could play important roles in HH-related biology and pathology, such as during organ development and tumour progression.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3