Disordered haematopoiesis and cardiovascular disease: a focus on myelopoiesis

Author:

Dragoljevic Dragana12,Westerterp Marit3,Veiga Camilla Bertuzzo1,Nagareddy Prabhakara4,Murphy Andrew J.12

Affiliation:

1. Haematopoiesis and Leukocyte Biology, Division of Immunometabolism, Baker Heart and Diabetes Research Institute, Melbourne, Australia

2. Department of Immunology, Monash University, Melbourne, Australia

3. Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

4. Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, U.S.A.

Abstract

Cardiovascular (CV) diseases (CVD) are primarily caused by atherosclerotic vascular disease. Atherogenesis is mainly driven by recruitment of leucocytes to the arterial wall, where macrophages contribute to both lipid retention as well as the inflammatory milieu within the vessel wall. Consequently, diseases which present with an enhanced abundance of circulating leucocytes, particularly monocytes, have also been documented to accelerate CVD. A host of metabolic and inflammatory diseases, such as obesity, diabetes, hypercholesteraemia, and rheumatoid arthritis (RA), have been shown to alter myelopoiesis to exacerbate atherosclerosis. Genetic evidence has emerged in humans with the discovery of clonal haematopoiesis of indeterminate potential (CHIP), resulting in a disordered haematopoietic system linked to accelerated atherogenesis. CHIP, caused by somatic mutations in haematopoietic stem and progenitor cells (HSPCs), consequently provide a proliferative advantage over native HSPCs and, in the case of Tet2 loss of function mutation, gives rise to inflammatory plaque macrophages (i.e. enhanced interleukin (IL)-1β production). Together with the recent findings of the CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcomes Study) trial that revealed blocking IL-1β using Canakinumab reduced CV events, these studies collectively have highlighted a pivotal role of IL-1β signalling in a population of people with atherosclerotic CVD. This review will explore how haematopoiesis is altered by risk-factors and inflammatory disorders that promote CVD. Further, we will discuss some of the recent genetic evidence of disordered haematopoiesis in relation to CVD though the association with CHIP and suggest that future studies should explore what initiates HSPC mutations, as well as how current anti-inflammatory agents affect CHIP-driven atherosclerosis.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3