Eicosanoid formation by a cytochrome P450 isoform expressed in the pharynx of Caenorhabditis elegans

Author:

Kosel Mandy12,Wild Waltraud2,Bell Alexandra2,Rothe Michael3,Lindschau Carsten4,Steinberg Christian E. W.2,Schunck Wolf-Hagen1,Menzel Ralph2

Affiliation:

1. Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany

2. Humboldt-Universität zu Berlin, Department of Biology, Freshwater and Stress Ecology, Spaethstrasse 80/81, 12437 Berlin, Germany

3. Lipidomix GmbH, Robert-Rössle-Strasse 10, B55, 13125 Berlin, Germany

4. Hannover Medical School and Medical Faculty of the Charité, Experimental and Clinical Research Center, Robert-Rössle-Strasse 10, 13125 Berlin, Germany

Abstract

Caenorhabditis elegans harbours several CYP (cytochrome P450) genes that are homologous with mammalian CYP isoforms important to the production of physiologically active AA (arachidonic acid) metabolites. We tested the hypothesis that mammals and C. elegans may share similar basic mechanisms of CYP-dependent eicosanoid formation and action. We focused on CYP33E2, an isoform related to the human AA-epoxygenases CYP2C8 and CYP2J2. Co-expression of CYP33E2 with the human NADPH–CYP reductase in insect cells resulted in the reconstitution of an active microsomal mono-oxygenase system that metabolized EPA (eicosapentaenoic acid) and, with lower activity, also AA to specific sets of regioisomeric epoxy- and hydroxy-derivatives. The main products included 17,18-epoxyeicosatetraenoic acid from EPA and 19-hydroxyeicosatetraenoic acid from AA. Using nematode worms carrying a pCYP33E2::GFP reporter construct, we found that CYP33E2 is exclusively expressed in the pharynx, where it is predominantly localized in the marginal cells. RNAi (RNA interference)-mediated CYP33E2 expression silencing as well as treatments with inhibitors of mammalian AA-metabolizing CYP enzymes, significantly reduced the pharyngeal pumping frequency of adult C. elegans. These results demonstrate that EPA and AA are efficient CYP33E2 substrates and suggest that CYP–eicosanoids, influencing in mammals the contractility of cardiomyocytes and vascular smooth muscle cells, may function in C. elegans as regulators of the pharyngeal pumping activity.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3